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1. IiTRODUCTIN

Turbulent, plane wakes generated by circuiar cylinders in tie absence .! a pre.sure

gradient have been the subject of numerous experimental investigations, the most notable of

which are those by Townsend (1947, 1949). The results of these studies, along vith results

obtained in other free shear flows, led to the early ideas of self-preservation and Reynolds

number independence proposed by Townsend (1956). It was postulated that, sufficiently far

downstream from the cylinder, an asymptotic self-preserving state is achieved for which

the flow can be described by a single velocity scale u and a single length scale L0 (see

Figure 1.1). That is, the transverse distributions of mean velocity and Reynold-, stress mus:

be independent of the streamwise coordinate x when normalized by these scalies. One

question under investigation presently is to determine whether and where these scales can

be considered unique.

It has been well established (Townsend 1956, Uberoi and Freymuth 1969, Symes and

Fink 1977, Yamada et al. 1980) that far-wake flows are self-preserving and that the

velocity and length scales, u0 and L, vary as (x - x0 )-1/
2 and (x - x0/2, re!pectively, as

predicted by the equations of motion and the momentum integ, ral constraint. '. virtual

origin, x0 , is used to account for viscous or Reynoids nir-n!r eofects. -

Townsend (1956) indicated that at sufficiently high Reynids r.nm:,r, LYid and t',, are

universal functions of x/d only, where d is the diameter of the -ylinder. The initial

motivation for the present study stemmed fron conparing ;t,.re early mnosuremnents

describing the downstream variation of the streamwise component of turbulence intensity.

We observed large differences between our data and data reported in the literature that

could not be attributed to experimental technique (Figure 1.2". Lar -e difere: _

the various results are evident, and the trends in the data are quite different at :r,.,

x/CDd, where CD is the drag coefficient. At the time circ3 1970), most investigators used

the cylinder diameter for the purpose of normalization. Considerations b),'d on ti'e

equations of motion show that the momentum thickness, 6, should have been used as the
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normalizing length scale for the small-deficit wake. That is, the drig force exerted cn tle

fluid by the cylinder should be used to d,; e tha initial f ow cViditions. We \.i:; us2

because CDd = 26. It can be shown that the normalized velocity and length scales should

vary as

(UmJ2  (x; 1l

(1.1)U1 2 x - xoj

'.4O 

(32 (x 1

The data of Townsend (1956), Symes and Fink (1977), and Yamada et al. (1980) confirm the

above relations and show that mean velocity profiles observed by each investigator are

self-similar when scaled by their individual velocity and length scales. However,

comparison of the data indicates a possible lack of universality in the behavior of these

scales; that is, different wakes developed at different rates with downstream distance.

Sreenivasan (1981) examined the manner in which wakes produced by a variety of

generators approached self-preserving states. He observed substantial differences n the

way these flows evolved, even though each flow preserved the shape of the mean v!lucity

profile when normalized by its own characteristic scales. Sreenivasan and Narasimha

(1982) suggested that a unique self-preserving state exists for all plane wakes and defined

the characteristic constants stemming from their suggestion. We felt at the time that their

data did not fully support their conclusion, and the present study compiles further evidence

negating it.

One pcssible explanation for the lack of uniqueness is suggested by the results of

Symes and Fink (1977), who investigated the effect of turbulence in the free stream on the

development of wakes. They showed that the relative scale of the external turbulence,

% ! rather than the level of the turbulence intensity, was an important parameter affecting the

r e'. -
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development of the wake. As each experimental facility has its o-.n unique free- stream

disturban.es, wakes enerted in a particu;ar facility may be unique to t'nat f - :nit'/ orly.

The lack of uniqueness of various small-deficit wake flows might be explained in terms of

the instability of the mean velocity profile in the wake.

Flow visualization (Cimbala et al. 1981) revealed that large coherent structures

develop far downstream frG-n the wake generator and these are not necessarily related to

the vortices shed from the generator. This was sufficient evidence to sugg'est that the

wake, like the mixing layer, contains large-scale coherent structures which may have a

wave-like behavior. Traveling, large structures were observed in both laminar (Freymuth

1966) and turbulent (Brown and Roshko 1974, Oster and Wygnanski 1982) mixing layers, and

their behavior was explained by an instability mechanism (Michalke 1965, Gaster et al.

1984). The similarity of the patterns occurring in both laminar and turbulent st.ites is not

Asurprising in view of the fact that the instability mechanism is principally inviscid and is

controlled by the mean velocity profiles, which are similar in both situations. Caster et al.

icomputed the amplitude distributions and the phase speeds of traveling waves associated

with large coherent structures in the plane turbulent mixing layer, and they obtined very

good agreement with experimental results by accounting for the effects of mean flow

divergence. The mean velocity profile in the wake is also inviscidly unstable, and its shape

is not affected by transition from laminar to turbulent flow, suggesting that a similar

*analysis could predict the evolution of the large-scale structures in this flow as well.

The stability and transition of a plane wake, generated by a thin plate placed parallel

Jh to a uniform flow, was considered by many investigators (e.g., Sato and Kuriki 1961,

Mattingly and Criminale 1972, Zabuski and Deem 1971). The analysis in these

investigations, however, was always concerned with the immediate neighborh('od of the

trailing edge, where the velocity deficit wits greater than 60 percent of the free-stream

velocity. Sato and Kuriki (1961) limited their analysis to a temporal evoluton of the

instability at one location in the flow, and Mattingly and Criminale (1972) considered the

,%.
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instability of the wake to naturl disturbances in both time and sp-ce pand ccnciuded that

the spatial evolution of a traveling wave gives superior predictions for the disturbnce

characteristics experimentally observed. The analysis invariably assumed that the flow was

parallel and therefore was limited to a prescribed streamwise location in which the width of

the wake was defined. The parallel flow assumption represents a severe constraint on

predicting growing disturbances in the wake because, in addition to the local width of the

flow, the characteristic velocity scale must also change as a result of the divergence.

.-" In contradistinction to the mixing layer, the plane wake is susceptible to both

symmetrical (varicose) and antisymmetrical (sinuous) modes of instability. The varicose

mode was traditionally disregarded (e.g., Sato and Kuriki 1961) because calculations based

on the parallel flow approximations indicated that the most strongly.' amplified disturbances

were sinuous. Data obtained in this investigation attribute the lack of universality of the

self-preserving wake, at least partially, to the interaction between the two modes.

Certainly, if one is interested in examining the wake over long distances, one cannot

neglect the varicose mode of instability.

The scope of the present investigation is limited to the small-deficit wake stirting

some 100 momentum thicknesses frum the generator and extending to 1600 momentun

thicknesses downstream. The flow was always incompressible, with free-stream velocities

not exceeding 35 m/sec and typical Reynolds numbers of a few thousand.

2. EXPERIMENTAL ARRANGEMENT

The wakes were generated in the University of Arizona wind tunnel facility. The

47: 30-foot-long tunnel is a closed-circuit type built by Kenney Engineering of California and is

nearly identical to its counterparts at Tel Aviv University and the University of Southern

California. The test section is 2 feet wide, 3 feet high, and 20 feet long. Tue top and

bottom walls, which are adjustable in height, were adjusted to compensate for boundary

layer growth and to obtain a zero streamwise pressure gradient. A 30-hp, variible-speed



WPIUU UUMU N r ' J VI FYN MW'.VVV IX xz . W W_ IFNWW MLr7 r1-WV Ow 771MK. . M WX WWW' W.WI-% W-. rW. '

-5-

motor with tachomet !r generator and a rnotoi controller drives an axial fC'w 4n w;1th

variable-pitch blades. The blades were set to ,.r mirmjrn pitch anfle t,, h lar ,e-

scale turbulence generation. In this configuration, the fan easily supplied the nec-sary

range of speeds in the test section required for the present study, that is, 2 to 35 m/sec.

The tunnel is equipped with chilled water cooling coils just downstream of the diffuser

section and an electric heating unit just upstream of the fan to control the flow J.

temperature. A Minco platinum resistance thermometer, connected to a special bridge and

digital panel display unit, allows measurement of the mean temperature of the flow to

-0.050 C.

The plenum chamber contains 4-inch-thick hexcell honeycomb, five 20-mesh stainless-

steel screens, and a 4-foot-long stilling section. Following this section is the 10:1

contraction section with a fifth-order polynomial contour to insure separation-free

acceleration of the flow to the test section. The wake generators were mounted

horizontally across the 2-foot span of the test section at a streamwise location 2 feet

downstream from the inlet. Measurements of the velocity profile at this plane indicated

that the flow was uniform to ±0.25 percent. The free-stream disturbance level in the

. streamwise velocity component is approximately 0.03 percent. The free-stream ;peed was

,-* monitored using a pitot tube placed 1 foot below the wake generator and about 2 inches

,,ato the flow. The pitot tube was connected to a MKS Baratron pressure transducer unit.

Velocities were measured using a rake of nine Disa 55P01 hot-wire probes connected

to Disa 55M01 and 56C01 constant temperature anemometers. The rake, which was 1.75

inches in total height, was used to measure the mean streamwise component of the

instantaneous velocity. The rake was mounted on an internal travrsing mechanism with a

swept-forward, thin extension arm, placing the probes upstream of any region of fl,w

interference caused by the mechanism. The mechanism permitted traversing in the

streamwise and vertical directions with resolutions of 0.10 and 0.01 inch, respectivNy. The

anemometer signals were conditioned using buck and gain amplifiers and simplP low pass RC

%"
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filters with a 6-d3 cutoff point at 10 k'z. The coi,.ditircm d s -;nils ,.er, s'nt ir.-,tly to

th analo.-to-diita! ca)nverter in the data acquisition sys:em. Lr. ; 1/'3 dara

acquisition/on-line computer system was used for digital signal processing. TI-e major

components of the system include an LSI 11/23 microprocessor, a 15-bit A/D converter

with 10 channels of simultaneous sample-and-hold circuitry; a dual-density, 125-ips, tape

drive; a 160 M-byte hard disk; 256 K-byte static memory; a printer/plotter; two Tektronix

4006 graphic terminals; a Tektronix 4611 hard-copy unit; and a SKYMNK array processor.

The multiple channel capability allows simultaneouS, continuous sampling of up to 10

channels, with variable sampling frequency up to "0 kHz. The system can be used as a data

, logger, i.e., to create digital tapes, or as an on-line computer for real-time analysis.

For calibration, the hot wires were placed in the free stream, well outside the wake,

along with a pitot tube which was mounted near the rake. The bridge voltage signals and

the output of the pressure transducer connected to the pitot tube were sent to the A/D

converter. An nth-order polyncnmial, U = Pn(E), where the independent variable E is the

conditioned bridge voltage, was fit to several calibration velocities for each hot wire,

thereby providing an overall ca!i:hrati,,n for each sensor. '.'ihenever th1e ve!,,-iLy deticits

exceeded 0.20 U , a ____,,,I-orcer f ly -i was used; whvrres for L: 10 .,ine.ir

0 1.; fit was adopted, speeding on-line computatif'ns.
-If.

During the course of the experiments, the temperature of the flow was maintained at

-0.10°C of the calibration temperature. The hot wires were continuously ciecked for

drift. The results were sensitive to any minor calibration changes because the maximum

velocity deficit was on the order of 5 percent. Generally, 27 to 36 data points were taken

to define a mean velocity and turbulence intensity profile.

The wake generators used in the present experiments are described in Tah.k 2.1. The

circular cylinders were steel, drill rods and the screens and solid strp were st lirless sze 'I.

The cylinder, screens, and solid strip were all mounted under adequate tension to nsure tat

the generators were straight and rigid. The screens and solid strip were speciallv
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- cases. To introduco controi'eJ excitaticns into the VJa ' , 5 '"rM 'I * ,n was

attached to the trailing edge of the flat plate and airfoil. Violin 3trtnl2; w '-,, used to

connect the downstream edge of each sil e of the fl';) to tv.o ," " .iors, one

located on each side of the plate just outside the tunnel sidewalls. The sp,iktrs vonre

driven in phase at the desired amplitudes and frequencies by in audio ampiifier fed by a

Krohn Hite function generator. The forcing frequency and amplitude -ere monitored by a

frequency counter and rms meter.

3. THE(ORETICAL CONSIDERATI)NS

3.1. Similarity Conditions

For a developing wake flow sufficiently far from the generator, the transverse

distributions of mean velocity and Reynolds stresses are assumed to be self-preserving.

That is, these distributions assume functional forms which are independent of x when

normalized by the velocity and ;enjth scales, u0 a1nd Z, respectively. i':is cr.n he

"* expressed in the form

U = U + 0 f(r)

"- u2 = u2
U u 0 g 11 (

t," -- "a

-uvu '12( (3.1.1)

, v2 = U ,

where n = y/2
0 aid u and L. are d'-fined n Fi;,jre 1.1. In genral, u,) and '.Vill be

functions of the following pirarneters:

.. , -.*".. . . . .".,. ... ,.
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U01L fcns(x, P, U, U,, F, L, dl, ,.-O' u5 S, F(,0)Tl rR5, '3.7.2)

where

L = span of the wake generator

d = characteristic width of the woke generator

CEO = geometry of the woke generator

uFS = amplitude of the free-stream disturbance level

NFS = nature of the free-stream 'Jisturbance

F = drag force on the wake generator per unit length

OTHERS = magnitude and nature of any vibration of the wake generator

The conditions under which self-preserving flow is possible can be obt-,ined t-y iuhstitutin'.i

the self-preserving distributions into the equations of mean momentum and turbu ~nt kinetic

energy and examining the coefficients in the resulting equations. For the small-deficit far

;V, wake in the absence of a pressure gradient, i.e., when uyzJ. << 1, Townsend (1970)

obtains the conditions

U 0 a1 du _ U~63.1.3)

4 dx u~ 0 J

The self-preserving functions are also subject to the momentum integral

constraint]

FIU21L dY a (3.1.4)

where e is the momentum thickness. in terms of the self-preserving function, i, this

becomnes

Y.
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where

in ffn(,~ dn n =1, 2(3.)

are constants for a given wake flow. For the small-deficit wake, u 0 ,' (< 1 and

therefore the second term in (3.1.5) can he dropped, placinga a constraint on the product

f (CuOL 0) of the two scales, since in the absence of a pressure gradient, F, 0, and U. are

constants independent of x. Dimensiinal reasoning, along with the linear part of (3.1.5),

indicates the variables F, i, and U. in fquition (3.1.2) should appear in the c-)Mbination

F/0ou2 [see also (3.1.4)]. It can be easily shown from (3.1.3) and (3.1.4) that

U r F 11/2 F 11/2
tU. PU 2 (x - x) -x~ (3x7

and

LO 1 Lp2

where xf the virtual origin, is commonly assumed to depend on the Reynolds number and

%JP geometry of the generator. This indicates that 0 is the appropriate norma'izing length

scale.

If a universal self -prescrvin!, st'ito xists :ndepenfdenft of iflittil con~lilt;crs, fre,--

stream disturbances, ind other piramneters, V~ie nornalized oistr hution iwct ions f ind i's

are universal functions andi ii and~ I thc :!orrnam ~vd vti Ity and -ngt h'C sOKiWd

.4 vary asI

.7 .1
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!
and

(o. ) 2 B. (3.1.1o)

where x = (x - x0 )/2 and A and B are universal constants. 2
0 is used to normalize x here

because 2e = CDd, which is nearly equivalent to normalizing by d for the circular cylinders

since CD 1- 1. Townsend (1956) and others used d in presenting their cylinder data.

According to Sreenivasan and Narasimha (1982), equations 3.1.7 and 3.1.8 may be

written in the form

W = [ (3.1.11)

*i and -

A = L -(xe)/2  (3.1.12)
0 (e

where W and .1 are eniversal ccnstants, provided the srnall-. eficit, equilibriumn wake is

independent of initial conditions existing near the generator (see also Narasimha and Prab~iu

1972). These parameters are rolated to the slopes in the relations (3.1.9) and (3.1.10):.J

above. If we define W0 and A0 by (3.1.11) and (3.1.12), where x is replaced by x - x. ,0v

% 2

• then A = 2/Wa and B = 20

3.2. Linear Stability Analysis
""S

The propogation of small-amplitude, wavy disturbances in a free shear layer was

considered analytically by Bouthier (1972), Crighton and Caster (1976), and Caster et al.

(1984). Since the analysis applied to the plane wake is identical to that presented in the

latter reference, only the governing equations and essential features will be presented here.

LSI "" ~*
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The equation of motion considered is inviscid and has the following form:

aa + U + Q = 0 (3.2.1)
at ax a

where 1 is the vorticity and U and V represent the velocity components in the x and y

directions, respectively. Upon neglecting the nonlinear terms, which are deemed to be

small, and assuming that a given mean flow is parallel to the first order of approximation,

the solution for the perturbation equation has a general form:

= RP[(y) expli(ax -Bt)]} (3.2.2)

where RP stands for the real part and the eigenfunction f(y) is defined by the inviscid form

of the Orr-Sommerfeld equation:

[U(y) - 0/a](O" - a20) - U"(y) = 0 (3.2.3)

in which the primes denote differentiation with respect to y. The wave number a and the

disturbance frequency 1 are eigenvalues determined by the solutions of (3.2.3), which

decay exponentially on both sides of the wake. Namely, the boundary conditions are

0'(±-) ± a (±®) = 0 (3.2.4)

Although the divergence of the mean flow may be partially controlled by the stresses

resulting from the interaction with the disturbances present, within the realm of the linear

approximation, the slowly divergent mean flow is assumed to be prescribed by equations

(3.1.1). Since the mean flow is assumed to be known, the conditions of self-preservation

%.4 are not crucial to the analysis; the only requirement is that the derivatives of the mean

stream function * with respect to x should be much smaller than the derivatives with

respect to y (i.e., the boundary layer approximation applies).

,..
V - . .*.°*' ,VV V VV *S
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By analcgy with the raralltd fCow prclem, the perturbation solutio,, has the form

P x/

11, :A~x) *p(x, y) expi J:( 'X)dx - bt j(3.2.5)

where ri(x) is a local wave number and the eigenfunction t(x, y) changes only slowly with

x. Since one expects the correction terms resulting from the slow divergence to be small

as well, a(x) and (x, y) at a given streamwise location are still determined locally by

equation (3.2.3), for which the mean velocity field U(x, y) is known, and the correction

term is defined by

F
Ax) A ep N(x) dx

SA(X) A 0 exp I
L 0J

where

.i

,U" '' , idv.% *x 1 - -

and

'i) J j2.i 2 U[2 a - 3gA2 ]- U" }}dy (3.2.6)

where *(x, y) is the adjoint function of I(x, y) given by

[U(x, y) - a - 2 . 2U';' = 0 (3.2.7)

bj.. . . . . .. t '.~ *V
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with the bourdar, condition, presented by

.'(±-,) ± $(±,,) = 0 (3.2.8)

When the mean velocity profile is symmetrical with respect to the line y = 0, the inviscid

'-' Orr-Sommerfeld equation admits both symmetric,7l (varicose) and antisymmetrical (sinuous)

I' modes of disturbances. For parallel flow, one may take advantage of the symmetry and

substitute a boundary condition on the centerline for the boundary conditions on one side of

the wake,

:(0) = =(0) 1

(3.2.9)

"" '(0) = ;'(0) = 0

for the sinuous mode of disturbance, or

0(0) = ;(0) =0
1 .0)

(3 .... o)

'(o) = 3'(o) =

representing the varicose mode. By virtue of the symmetry, one may usually confine

attention to the semi-infinite interval (0, -a) in the parallel flow computations.

For a given real frequency B of the disturbance, the complex eigenvalues I(x) and

eigenfunctions s(x, y) and ;(x, y) were evaluated at each of the streamwise !ocations of

interest, provided the imaginary part ci(x) < 0 (i.e., the disturbances in the qu.si-paraliel

.. flow approximation are amplified in the downstream direction), and these soluzions were

used in determining A(x). The mean velocity field used in solving equations 1.2.3, 3.2.6,

and 3.2.7 was obtained experimentally and was expressed by the exponential distrhitiun

% % a% %~C*a .* .
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1 -- exn[-0".63)7r,2 - 0.056n4] '3.2.11'
- U

where U. is the free-stream velocity and U0 (x) and L0 (x) are the velocity and length

scales discussed in section 3.1. Despite the fact that the normaliied shape of the velocity

profile, f(ri), remained invariant for all wake generators considered, the ei-ensolutions had

to be re-evaluated for each generator separately since u,(x) and L0 (x are dependent on

the initial conditions, even for the small-deficit wakes.

Sato and Kuriki (1961) considered the temporal evolution of the small-amplitude,

sinuous disturbance at a single location in the flow at which (1 - U,/U.) = 0.692.

Mattingly and Criminale (1972) extended these calculations to bth modes of instability

evolving spatially and temporally at five prescribed locatiuns in the immediate vicinity of

the trailing edge of a flat-plate, wake generator for which 0.44 > u a.
( .>0O. Since these

computations are strongly dependent on Uo/U. the solutions obtained are of little value in

predicting the character of the amplified disturbances in the small-deficit wake for which

Uo)/U«. << 1. Furthermore, the assumption of parallel mean flow (i.e., the constancy of

uO/U, and of Lo/O) led to the general belief thit te varicose mode has a neglig.ble effct

on the flow because its rat!, of 3mpiification (-' ) is smaller. It will br. shown later that

the interaction between the two modes of instability leads to physically acceptable flow

patterns associated generally with large coherent structures contained in the wake, in spite

of the presence of the small-scale turbulence, which was not considered in the cliculations.

4. EXPERIMENTAL RESULTS

4.1. General

The mean flow field in the se:f-preosrving region of a walv and the intien~itV of tte

longitudinal component of the turbulent fluctuations were measir d for a variety of two-

dimensional wake gonerators. Data w(re obtained at distanc'-, ranging from I0 to 200

b,
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mcmentum thicknesses downstream of the generator, wherf, tvnpk.al %elrity de~izi:s ,n the

centerline of th- wake varied from 0.15 U to 0.03 U . The velocity at which the

measurements were done varied from 7 to 20 m/sec, corresponding to a range of Reynolds

numbers based on the momentum thickness and the kinematic viscosity of air of 650 to

3200. In most instances, the shape and the size of the wake generator were tailored to

provide a constant momentum thickness. The effects of Reynolds number and aspect ratio

were examined separately in wakes generated by circular cylinders. Forced sinuous

disturbances were generated in the wake of a symmetrical airfoil (having a maximum

thickness to chord ratio of 30 percent) and a flat plate (thickness to chord ratio of 2

percent) by an oscillating, small flap mounted at the trailing edge. The results are

summarized in Table 4.1.

g 4.2. The Universality of the Mean Flow Field in a Small-Deficit, Plane Wake

The wake investigated most extensively in the literature is generated by a circular

Vcylinder, and therefore our investigation started with this wake generator. Some 400

momentum thicknesses downstream, the velocity scale u0 was indeed prcport:nnal to X-1 '2

and the width of the wake L0 was proportional to xI / 2 , suivgg'sting that similarity of the

mean flow was indeed attained. The mean velocity profiles were plotted in the similarity

coordinates and collapsed quite neatly onto a single curve described by the exponential

function

f(ri) = exp( -0.637n 2 
- 0.06n4 ] (4.2.1)

(Figure 4.2.1). The exponential function traditionally used to describe the mean velocity

profile (i.e., f(n) = exp[-0.693n 2]} overestimates the mean velocity r'h~slured at the '),Wt r

edges of the wake and, therefore, the fourth-order correction term was acded. We

expected the flow to he independent of Re when all length scales %ere normalized by the

-- "
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momentum thickness, and indeed the values of W0 ard ( were not aic? 'd ily changes in

Re ranging froin Red = 13f,0 to Red 5 t). i-. ,'c ra',o of the :tirnd~r *.s variod

from 96 to 384 by changing the diameter of the cylinder and keeping the span constant

(i.e., the distance between the sidewalls of the wind tunnel). The two-dimensionality of

the mean flow field was checked at i = 430 by comparing velocity and turbulence intensity

profiles obtained at z/L 0 = 0 t 7.5 and was found to be satisfactory. The values of W0

1Z' 1.75 and A0 = 0.287 fitted quite well all wakes generated by a circular cylinder (the values

were averaged over experimental points with x > 200). This result would give credence to

the universal equilibrium concept suggested by Sreenivasan and Narasimha (1982), except

%that the asymptotic values of the constants suggested by these authors were quite

different, i.e., W0 = 1.63 and A0 = 0.300.

The universality of the mean velocity profile generated by a circular cvlinde r in our

facility could lead to the conclusion that either the development of the plane, small-deficit

wake is not susceptible to external disturbances or the velocity-dependent external

disturbances in our wind tunnel (like the fan blade passage frequency, vibrations, etc.) are

negligible within the range of variables considered. In order to check *!-.e", idit, of either

statement, we proceeded to investigat wakes prc.ji:c ', . I vari.~t 'y .,o- ,:nn.i, nal

generators. The first family of generators considered were scrcens with solidity ratios

ranging from 30 to 100 percent (a thin metal strip placed normal to the free stream). The
- Y,

porous screens have numerous advantages: (i) there is no flow reversal in the vicinity of

the generator with all its ensuing experimental complications; (ii) the porous screens do not
.

*" generate vortices in the same way as does the circular cylinder and, therefore, their drag

should not be as sensitive to Reynolds number; (iii) the roll-up of vortices in the -rixin,

'p-
layers generated in the neighborhood of the screens is, in principle, predictable and

dependent on the solidity (Gaster et al. 1984); and (iv) the dr., of screens having a

different solidity can easily be equated by altering the size of the screens. It was decided

to maintain the momentum thickness of all four screens constant in order to avoid any

*'... .' , . . . ._ . / . . - . . ' - . . . . -
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questions about the unknown effects of Reynolds number or aspect ratio in the di,elpm..nt

of the plane, small-deficit wake. The shape of the normalizeu rmean vexitv Frorike is

identical to that obtained for the circular cylinder in all cases considered, yet the vahues of

WO range between 1.67 for the 70 percent solidity screen to 1.88 for the limiting case

representing the solidity of 100 percent.

The value of W0 decreases with increasing solidity of the screens, provided the

porosity suffices to prevent flow reversal in the lee of the screen; however, the value of WO

for the solid strip (which is regarded as a screen having 100 percent solidity) is higher than

the value of W0  for the most porous screen investigated (solidity of 30 percent). This

result is attributed to the observed alternate shedding of vortices from the two separation

points on the strip. The determination of the threshold solidity beyond which an alternate

shedding of vortices starts to occur is not within the scope of the present invustigation.

In the absence of periodic forcing, the lowest WO measured in this experiment was

attained in the wake of a nonlifting, thick, symmetrical airfoil section. The mean velocity

field in the wake of the flat plate was quite similar to the velocity field produced by the

wake of a circular cylinder except for the location of the virtual origin x0. The

introduction of periodic surging reduced the effective w0 frcm 1.71 to 1.32 wt:t-.o:t

affecting the overall drag experienced by the body (i.e., the product Woao) , Th-e location

of the virtual origin moved downstream with increasing amplitude of the forced cscillations

(Table 2.1).

The product W 0 A represents the conservation of momentum within the context of the

linearization and, therefore, its constancy for all wake generators (W = 0.507 t 0.002)

reaffirms the suggestion that the normalized shape of the mean velocity proft;e (Figure

4.2.1) is universal for all the wake generators considered. An examlDe of the variation of

(U./Uo) 2 with i is shown in Figure 4.2.2, which establishes that (U./u0 )2 = Ax and that

the coefficient of proportionality A depends on the wake generator.

7
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The mean velocity in the wake obeys the similarity scaling for T"> . !L d 'ferent

slopes of the lines drawn in Figure 4.2.2 result in a diversity of estim-ztes f(,; - ' 0 ( F;gure

4.2.3), varying between 1.3 and 1.9 depending on the wake generator. The differences are

large and are not attributable to experimental inaccuracy.

Only one value of x0 was chosen for each wake generator, and it had to satisfy the

dependence of both U0 and L0 on initial conditions. The choice of x does not affect the

dependence of W0 or A 0 on the initial conditions, although the absolute valus of W0 and 0

may vary slightly if improper values of x were used. Figure 4.2.3 demonstrates this point.

The open symbols refer to physical distances measured from the trailing edge of the

generator (i.e., x 0 = 0), and therefore the values of W based on these data define a

sloping curve rather than a horizontal line. This effect is particularly severe whenever x0

is large, as it is in the wake of a circular cylinder. It is apparent, therefore, that for the

range of distances considered, the mean flow in the plane, small-deficit, turbulent wake is

dependent on the initial conditions set up by the generator.

4, The preservation of momentum deficit in the wake produced by all the generators

considered above is illustrated by plotting 9!L 0 versus uo/U (Figure 4.2.4%. For simi!jr

velocity profiles,

11 u0

~.I.

with In as defined in equation 3.1.6.I

Equation 4.2.2 describes a parabola (a solid curve in Figure 4.2.4), while the linear

" approximation (9/LoXCu/uo) = 71 is drawn as a dotted line. The values of 11 nd 1 are

2.06 and 1.505, respectively, and are in excellent agrnement \vth the data of Sreenivasan

and Narasimha (1982). Measured values of 6L0 follow quite clear'y the paralolic curve

for all u 0/U 0. < 0.14. The product (6/L 0 )(U . /u 0 ) is aporoximatce1 ,' 1.97 (rather than 1 =

2.06) and represents the shortcoming of the linearization. It is surprising, therefore, that

i

J4
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-0 and L0 behave a they do (u. X-1/2 and LO ;)it K of t ' tact tkit

5h(,,.vn in Figure 4.2.4 illustrate a consistant kjeviation frp rn-,.

4.3. The Longitudinal Component of Turbulent Intensity

For a self-preserving wake (Townsend 1956), the longitudinal component of the

turbulent intensity u is given by

2= 2 1P(4.3.1)u0 g1 l(n)

where g11 (n) supposedly is a universal function analogous to f(n). Since the measured

distribution of g11(n) consistently showed a larger degree of scatter t!han f('n, a

normalized function ;2/(52) = G(n) (4.3.2) was plotted in Figure 4.3.I. The
max

.- normalized function was used because of the possibility that a slightly err ,"eoUs uO,

resulting from drift in the response of the hot wire, might cause the apparent scatter in

g1 1 (n). The distributions of u2 plotted in Figure 4.3.1 were measured in the wakes

. generated by the airfoil, the solid strip, and the 70 percent solid screen. Although each

distribution is approximately self-similar (if one is willing to diisre i7r t'hi oC_';'' S. t

in the data), the function G(rn) clearly deptends cfn the type o[ lnnr .iz,. , o ..

'°,.." in assessing the !ack of universality is the ratio 2 /U 2  (where z.-e su!'-script (IL mtfrs to
• .. CL max

the center plane of the wake), which varies from 0.73 for the solid strip to 0.9 for the

4% airfoil. This ratio is correlated with the rate of spread of the wake or the d.,aV of th,.

mean velocity on its centerline. Indeed, the lack of universality of _u - presented by
CL

various investigators for the circular cylinder triggered the present investigatinn (Figure

1.2). The peculiar shape of t-,(n), which has a local minimuum at n. =J is .3 ,,., 3tid ,o:

single row of large vortices distributed on t'ae centerline of the wak-, (see aL;o Wvynanski

et al. 1979). It was, theref're, anticipated that large coherent structures w-ich retain

their characteristic shape and associat,'] velocity pertornition are responsible for t"C

apparent dependence of the wake on the conditions at its origin.

Alp
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4.4. Spectra and Normal Modes of Instability

Spectra of the str amwise component of t:,.e velccity Hluctuatic.:s ' .,er rasured at

several x, locations in the wake behind the flat plate. The measurements presented in

Figure 4.4.1 were taken on the centerline at 102 < i < 587, while the spectra in Figure

4.4.2 were measured along a curve representing the outer boundary of the %ake, i.e., at -

= 3. Only the most significant decade of the spectra have been plotted. T:,e absci;;a on

these figures is frequency plotted on a logarithmic scale, while the ordinate is fF(f) ;n order

to represert the relative contribution to the streamwise component of intensity it a given

frequency f [i.e., -2 f F(f)df = ffF(f)d(logf)].

The spectra measured on the centerline of the wake (Figure 4.4.1) have a snape which

is typically observed in any unbounded, turbulent, shear flow (Chi-p.vne 1)7.1). The

spectral distribution is broad, and the frequency range associated with the most energetic

eddies gradually moves toward lower frequencies as the flow develops in the downsttetam

direction. The insert in Figure 4.4.1 shows a log-log plot of the normalized (to unity)

spectra F(f). The frequency has been rendered non-dimensional using the local lergth

p scale, L0 , and U.. The similarity of the spectral distribution indctes that then h

scales associated with the energy-containing, eddies ( U /1) are proportional to the

width of the wake L0 and, therefore, L0 is the appropriate characteristic lenth sca2 for

use in rendering the mean velocity field self-similar for a given generator.

The spectral measurements at n = 3, shown in Figure 4.4.2, represent fluctuations

induced by the passage of the large turbulent structures in the wake since the ccordinate n

3 is located outside the turbulent interface. The insert in this figure shows thit, as ,,vith

the centerline spectra, these spectra also scaile with the local wi,]ti . ote te <- t )f

the spectral peaks toward lower frequ,,cy v Ith 'ncreas~n .

Equation (3.2.3) was solved "or the proscribed loc,.l mean velocity i-ld rad nurmeratuus

real frequencies to obtain the variati.nn .-,f the spatial rat, of Amplitudte -a) w,

°.%
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ir,creasing distance from :tn flat plat,. ik, r':.tilt ',f t' con'p. :;-n , :h.t :h

maximum local amrn i;.icat cn rat? sl:ifts t i.,rd !owr fro -:ncies with .nc a- '' x.

4.4.3 shows the spatial amplification rates for difterenz frequencies. The vaue ef _X for

which a constant frequency line intercepts the _x axis (i.e., ci = 0) corresponds to the

downstream location at which a wave at that frequency has undergone a mvximum of

amp!ification according to parallel, linear, inviscid stability theory. N plot or these
..

*", intercept values versus frequency, shown also in Figure 4.4.3, gives what ve will refer t.

as the expected predominant frequency in the wake versus distance fru;m the flat Flate.

The measured predominant frequency range, defined as those frequencies at n = 3 whose

amplitude is within 90 percent of the peak energy value, are pl. tt-d in Figure 4.4.3 and

compared with the computed results. Tlhe dashed lines show the mcasured prod minant

frequency range similarity determined for rn = 0. The good agroorent between the

ip measured predominant frequencies associated with the pissage of the large coherent

structures and the most-amplified frequencies calculated using parallel flow, linear stability

theory suggests that the large structures observed in this flow may be related to the two-

dimenional instability modes.

.-r' 4.5. The Amplification of Imposed Sinuous Oscillations

Two-dimensional sinusoidal oscillations in the direction normal to the mean motion

were generated in the wake by the motion of a small flap hinged to t'e 'ailing edge of the

flat plate. The frequency of the imposed oscillation was matched to the expected most-

amplified fluctuations measured at n = 3 in the region of interest. A typical power

spectrum measured with and without forcing is presented n Figure 4.5.1. Small-amplitude

oscillations do not affect the turbulent intensity in the wake nor do they affect the 0h p,'

of the spectral distribution. The two spectra presented in Figure 4.- .I are al-nost ident:cal

with the exception of the peak corresponding to the frequency of forcing.

%2
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In order to be sure that the instability ,rec!,_nism in e .,, r ibie

for the ampification of the imposed uscila-j.(ns, mes-re'nen' SP , tr ,,re r .r,4

taken at one location in the flow for a variety cf forcing frequencius while a!l other

controlled variables were unchanged. Sinrc the backgreund turbulence ke is !Iot

affected by the introduction of forcing (Figure 4.5.1), the ratio of the amplitudes between

the imposed wave and the background exhibits the sensitivity of the wake to the imposed

sinuous perturbations. The normalized spectrum in the center of Figure 4.5.2 sLows the

ratio of amplitudes for the most-amplified frequency at the location consid2red. When the

frequency of forcing was either higher or lower than the most-amplified frequency for the

given location and flow conditions, the ratio between the peak amplitude and the

background diminished. In view of the symmetry of the response around the most-amplified

frequency (Figure 4.5.2), which was repeated at other flow conditions (and therefore other

frequencies), the possibility of resonance of the mechanical flap system was discarded.

The amplitude and phase of an artificially excited sint!uus wave at a frequency

corresponding to fe/U = 6.4 x 10-3 (f = 20 Hz) were calculated for the wake of the flat

plate. The mean flow required for the solution of eqs. 3.2.3, 3.2.6, and 3.2.7 was provided

by eq. 4.2.1 and Table 4.1 (i.e., W0 = 1.57, 'n = 0.323, ;0 = 43). These equations were

.solved at intervals of x = 10 for a rectangular window starting at x = 250 and endin3 at x =

750 and at intervals of 0.1 between 0 < y/20 <.40. For a given frequency (8 = 2f Lo(x=

750)/U.), the eigenvalues a(x) and eigenfunctions O(x, y) and ;(x, y) were evaluated at

each of the 51 streamwise locations. These functions, their derivatives with respect to

both x and y coordinates, and the mean flow information were used to determine the

~~~correction term for slowly div,-r,,,ent flo%., Ak(x, (r q. .. '  'n th, t- ea w~

component of the velocity perturbation was measured and compared with the calculations.

A typical distribution of normalized amplitudes of the sinuous mode across the entire

wake is shown in Figure 4.5.3. The solid line represents c-npited values, while the

triangles represent experimental results at i ~ 500. The data were acquired by recording

% % %
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tlhre velocity, together with te sinusoidal si-na! i tivatig tt! !:av. T rItV % ral

was phisiJ averaged over f,'chos ut ti'e flap mnoticn, and •,c Fori,, :ran ,, , t 7,t

average records provided the phase and amplitude estimates of the spectral elements of he

veolcity field, which were quite free from the random, turbulent fluctuatio-s present in the

original signals. There is little doubt that the artificially excited wa,.e train cin be

described by an inviscid linear model, in spite of the fact that the flow s fui'v ,ur",,itnt.

One may note that the measured amplitude distribution in Figure 4,5.1 is not symmetr;cal

about the centerline; the lack of symmetry is partly attributed to inter; ':I"nce betoween the

probe holder and traversing mechanism and the large structures in the wo.Ne.

A detailed comparison between the predicted arnoliz:ude Jistribution or the forced

wave and measured amplitude profiles at eight streamrwise location, is shown in FIgur

4.5.4. In the bottom part of this fiuri.!, th2 vc cities .ere normaliizt by thtr r,,sI,'CtiE

maxima, which are replotted at the top. The computed maxinum amplitude at x = -00 was

assigned the value of unity, which is the only floating constant in this comparison. The

predicted and measured lateral distributions of amplitudes are in f i-x-d agreement with one

another, as is the decay of the -naximi wit. incrIo.ising (i;tanco fro(n tht' were'' r. It ..,as

surprising, at first, to note that the maximum ari;):ttude of t * -'-

diminished with x, in spite of the fact that the quasi-parai.el solutions basi'r ;n eq. 1.2.2

would predict amplification (0i < 0). The reasotis for the apparent anomaly stems from the

fact that mi is a small negative number in the range of distances considered, and it is

outweighed by the shape of the eigenfunction whose maximum amrplitudJe diminishes with

increasing x (Figure 4.5.5). A similar observation for an axisvmmetric let ws made by

Strange (1982. Te va!ue of the integral of the perturbation amnltude icross the wake

increases somewhat with .ncreasing x because the widttn of -he , rY-re,,s. In fact,

the product of ihe maximum ampltude and the local width s r l',triy cnta-t h-,'.'en

325 and x = 700. This result could not have ne., pro, ict.d by the parall-I flo,

*1*%
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distribution of j2 shown in Figure 4.3.1, although the ratio [0,17)CL/(U.)max i: -9neral=y

lower than the corresp ndin- brcid-band diztribution. Because the data a,-a rto longer

phase locked, the actual amplitudes plotted are much larger than for the imposed wave

train (Figure 4.5.3). Since the calculated amplitudes do not vanish on the centerline of the

wake as predicted by the sinuous mode of inviscid amplification, another mechanism has to

be considered. A hint was provided by the fact that the amplification rates (-ai) predicted

on the basis of the parallel flow approximation were overwhelmed by the presence of

longitudinal gradients in the mean flow. It seems plausible that the same longitudinal mean

flow gradients may have enhanced the relative importance of the varicose mode, which

would contribute to the amplitude of the fluctuations on the centerline; if not, non-linear

effects and secondary instabilities may have to be considered.

The calculating procedure outlined in section 4.4 was repeated for fe/U = 1.3 - 10-2

and the appropriate mean flow parameters (Table 4.1). The calculations were done twice;

once for the sinuous motion, then a second time for the varicose mode. By assuming that,

. to the first order of approximation, one may simply superimpose the effects of both modes

,t instahlitv, t'he resulting'. amplitudes can be calculated. For the purpose of :nmnarison

'Ak between c,1putati ins and experiment, it .%as assumed that the initial amplitudes resultin- ,

from both mor.4s are equiliy important; namely, that the maximum amp;itude of the

varicose mode is equal to the m3ximum amplitude of the sinuous mode at some initial x

distance from the generator. The results of these calculations are plotted in Figure 4.6.2

for 370< x < 640; the symbols in the figure represent data calculated from experimental

e. results and filtered at fe 'U = 1.3 - 10-2. There is a qualitative agreement between the

predicted and measured lateral distributions of the u2amplitudes, indicating that both

nod's of instability are probably present and can give rise to the peculiar profile of 'he u

fluctuations - the wake. The agreement between theory and experiment in 'his case is not

is go od as for the forced sinuous wave, sungesting that either the two-dimensional

"%
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approximation is not of value or the simple linear superposition of both modes is :nadequate.

Another possible error stems fron the nonlinear terms ncg!ected in the present context.

In order to explore further the importance of the interaction between the two modes

of instability, we resorted to flow visualization using a smoke wire. The wire was

positioned at i = 350, while the camera was located at x = 500. The smoke patterns were

photographed at U = 3.4 m/sec (Ree = 600). Large coherent structures are clearly

visible (Figure 4.6.3), even in the absence of any imposed oscillations. These structures are

v similar in appearance to the Karman vortex street because they seem to be comprised of

vortices of alternating sign of vorticity, which are placed in a staggered manner on both

sides of the wake centerline. Therefore, neither the varicose mode, which requires that the

vortices appear in pairs distributed symmetrically about the centerline, nor the sinuous

mode, which requires vortices whose center coincides with the centerline, dominates this

flow. Although the vortices are large and coherent and have a prevailing wavelength of

approximately 15 cm, there is sufficient irregularity in their shape, size, and position to

cause the spectrum of the induced fluctuation at the edge of the wake to be fairly broad

(Figure 4.4.2). The introduction of periodic forcing did not have a significant effect on the

" shape and scales of the large eddies visualized in this manner. The degree of two-

dimensionality of these structures was first estimated by placing the smoke wire parallel to

the circular cylinder but displacing it from the generator in the lateral directicn in order

that the smoke would not be entrained by the wake before i = 300. The resulting photo

(Figure 4.6.4) indicates that the large eddies have a tendency to be two dimensional,

falthough the two-dimensionality is by no means perfect. There appears to be a variation of

amplitudes along the span of the wake, as well as phase irregularities.

Coherence spectra calculated from u fluctuations sensed by two probes sopar.at,.d in

the spanwise direction provide a quantitative measure of the two-dimensionality of the

various scales. The two-point, cross-correlation function for stationary random variables

ui(x , t) and uj(x+ r, t + T) is dfined as

'p.
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Rij(xr, ) = ui(., t) uj(x+ Z, t + t..

and the cross-spectrum,

~I. "Ii27r fT
*ij(x, r ; f) = Rij(x, r; t) e dt = Cij(r, x; f) - iQij(x, r, f) (4.6.2)

j.1-

where Cii . called the cospectrum and Qij, the quadrature spectrum. The coherence

spectrum is defined as

I)~x r;f ~(x , r; f)

Cohi(x r; f)= Fii(x; f) Fj(x+ r; f)4.6.3)

where Fii(x f) and Fjj(x + r ; f) are the familiar (one-point) energy spectra, i.e.,

= Fii(x; f)df (4.6.4;

The phase angle 8 ij can be obtained as

li(X r; f) = tan - E1 (4.6.5)

wThe coherence spectrum is bounded, and its value must be between 0 and 1. We will

consider the component Coh11 (x, Az; f), which represents the degree of spatial cnrr'Jation

between the Fourier components of ul(x , t) and ul(x + kAz, t + t) at the same frequency,

where k is a t:nit vector in the z or spanwise direction.

A spanwise rake of six hot-wire probes with Az spacing from 1.1 to 2.54 cm was used

V' for the coherence data. Measurements were taken in the wake of the flat plate with and

%"I
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without forcing at = 430 and 646, with the rake located at '. = 0, 0.6, and 3. Tlhe lateral

posit~on n = 0.6 corresponds roughly to the position of m-ximum U acti,itv. The wake

response at x = 646 and n = 0.6 to various forcing level; is shown in Figure 4.3.3 for two

Az spacings, 1.1 and 25.4. The values of the coherence at the forcing frequency (50.0 Hz)

and its first and second harmonics as a function of amplitude are presented. All amplitudes

are scaled by the highest amplitude of forcing. Where the relative forcing amplitude was

less than 0.25, the coherence spectrum responded in a linear manner. For amphtudes in the

range of 0.25 to 0.5, the value of the coherence at the forcing frequency is nearly

independent of A z in the range investigated, at least up to A z/L 0 = 1U. The relative

amount of energy tied up with the forcing frequency can be determined from the spectrum

of the velocity fluctuations. For this case, the spectral peak at 50 Hz was one order of

magnitude above the 'background' turbulent fluctuation.

Figure 4.6.6 shows the coherence spectra measured at x = 646, n = 0.6, and A = -

0.4, with and without forcing. The forcing frequency was 50 Hz, corresponding to the

expected predominant frequency at this x, and the relative amplitude of forcing was J.25.

The effect of forcing sharply enhances the value of the coherence at the forcing fr, quency

to 0.92, withi little effect on the rest of the spectrun. The corre 3;mL-4i, da.i for

" A z/L 0 = 10 are shown in Figure 4.6.7(a), where only the data for the forced rise are

presented. The coherence for the unforced case at this separ iion vanished at all

r' irequencies. For the forced case, the entire correlation is contained in the spectral spike

at 50 Hz, for which the coherence is 0.87. Similar resuits were obtained at forcing levels

as low as 0.05, where the peak correlation was 0.21 and 50 Hz. st n = 3

f Figure 4.6.7(b)], a much hi;her coherence at the forcing frequencv vas n,2asured (0.98),

indicating that the large structure in the wake must be highly two dimensional to generate

such a result for the large spanwise separation, A z/L 0 = 10. For the unforced cise, the

7%.
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coherence is nearly zero from 10 to 260 Hz. The results indicate thit a sli'.: i-ount of

forcing generates a strong two-dimensional wave in the wake at the forcing frequency.

Is the proposed model capable of explaining the large structures observed in Figure

4.6.3? For this purpose, some streak-lines had to be calculated. Since the calculations

were ai ~ed at a qualitative cnq,rstanding of this phenomenon, a parallel flow s

approximation was invoked locally. It was assumed that the particles wcre uniformly

released at x = 300, where Uo/U. = 0.06. The prevailing wavelength gave rise to 5 = 0.8,

which corresponds to the spatially most-amplified sinuous wave train in this mean flow.

Both u and v components of the perturbation velocity were calculated across the entire

wake, and the corresponding particle paths were established from the equations

= U[x(t), y(t), t]; dy = VIx(t), y(t), t] (4.6.6')

(For a detailed description of the procedure, see Michalke 1965.) The coefficient of

velocity perturbation in all these calculations was taken as 0.025.

Five of the streak-lines calculated taking only the sinuous mode into consideration are

shown in Figure 4.t,.8(a). Thi streak-lines have a sinusoudal pattern tjndu!at- v al- ut the

centorline of the wekl . The amplitude of the undulations incro,,isos with inc,asing

distance fror the source; at large distances, most of the particles congro,,te at the outer

edge of the wake.

The corresponding, mncst strongly amplitied varicose mcxie has a perturbation fr-quency

1of 8 = 0.5 and, therefore, corresponds to 5,8 of the frequency of the prevailing sinuous

mode (not quite a subharmonic frequency). The computed strea1 ,-lines for th:, varicose

mode are shown in Figure 4.6.8(b). The particles in this figure congregate in lumpr, which

are symmetrical about the centerline of the wake. T'he streak-lines shovwn in Figure

4.6.8(a) or 4.6.8(b) bear no rose-nLlance to the observed coherent structures seel in Figure

4.6.3.
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Th-_ strealh-Iines shown in Figure 4.6.8(cl repre-ent the corn'jined motion oi L:-n vcs

oi insn-.:, v'ieri the coefficient of the ,elocity perturbation is still maintainod at -).0l25.

The initial ratio between the amplitudes of u and v in the varicose mode and the sinuouw ,

mode was 0.7. (This number simply appeared because the eigenfunctions were not

normalized; changing the initial ratio by a factor of two made no substantial difference in

the pattern.) The initial phase relation between the modes was assumed to be zero.

(Changing this number also had no effect on the basic pattern at some distance downstream

from the source location.)

The prevailing wavelength of the streak-lines [Figure 4.6.8(c)] still corres p:nds to the

prevailing wavelength of the sinuous mode, but the presence of the varicose mode not only

modulates the streak-lines but also contributes to an apparent chaotic behavior. Most

important is the fact that these streak-lines, when replotted on a larger scale, re;em-ble the

pattern observed in the smoke photographs (Figure 4.6.3). Namely, the particles

congregate in a staggered manner about the centerline and the large eddies are, at times,

separated by deep incursions of *potential' fluid. Sometimes, these incursions are narrow

(marked by the letter "N" in Figure 4.6.q1) ind, sometimes, they are vide iMarked by ''.

Therefore, it transpires that only the combination of both modes can successfu!ly describe

the flow.

The distributions of vorticity for the three cases considered in Figure 4.6.5 were

calculated directly from the eigenfunctions solved, because the vorticity perturbation

w(y) = -[U"/(U - 8/c)]€ (4.6.7)

p. and the total vorticity

12(x, y, t) = -U' 0.015 RP(4y) exp[i(ax - Bt].' (4.6.8)

which is, of course, periodic in time. The vorticity contours p!otted in Figure 4.6.10 were

!.
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calculated for t = 2-r/9 and for 355 <. < 385, as in Figure 4.6.9. (The sh.Kdd regions

correspond to negative vorticity.) By neglecting either the varicose mode (Figure

4.6.10(a)] or tile sinuous mode [Figure 4.6.10(b)], the resulting vorticity contours appear

to be very regular. The contours are either symmetrical or antisymmetrical about the

centerline and indicate intensification of vorticity with increasing i. The vorticity

contours resulting from the combined two modes of instability [Figure 4.6.10(c)] are ,.

surprisingly similar to the contours produced by the sinuous rode alone. One may notice,

however, that the intensity of the contours in Figure 4.6.10(c) are modulated by the

varicose mode, even if they are not severely distorted by the addition of this mode. A

simple superposition of Figure 4.6.10(c) on Figure 4.6.8 leads to the conclusion that a

congregation of particles observed in a still photograph does not necessarily correspond to a

concentration of vorticity.

5. DISCUSSION

The velocity and length scales in a plane, turbulent, and supposedly self-preserving

wake are depeno.nt ,n initial conditions and, theretore, on the shape and size oi the

obstacle generating the wake. We could not prove that these scales will not Ixecome

universal functions of (x/0) at extremely large valu,,s of (x/e), but the distances -it which

this may (or may not) occur may be so large as to have no practical impact on the problem.

since the range oi x/6 values in the present study extended to 2000 where u0 ,'U - 0.03.

. The dependence of the plane mixing layer on initial conditions was observed some years ago
'A

(Champagne et al. 1976) and traced to the presence of large coherent structures ('ster and

Wvgnanski 19,2). The existence of large coherent structures in a wake, hoever, was

often confused with vortex shedding, which was so ably discussed by Karman (1912) in the

lee of a circular cylinder at !ow Reynolds numbers. The large eddies propo -od by Townsend

(1956) and Grant (1958) bear little resemblence to the structures observed presently.

a% %
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Townsend suggested that the lirge eddies present in fully turbulent free shear flows might

be generated by hydrodynamic iistability of the mean :low.

What is the cause for the apparent deperdence of the small-deficit wake on the shape

of the generator? The nature of the flow in the vicinity of the generator, including any

vortices shed by the generator, can provide the only plausible explanation for this

phenomenon. The frequency, amplitude, and predominant mode of the initial perturbation

vary from one geometry to another. For all geometries investigated, the prcdomlnant mode

4 of shedding was sinuous, but the presence of the varicose mode was also detected in the

vicinity of the low-solidity screens and circular cylinder. The strongest sinuous oscillations

were observed downstream of the thick symmetrical airfoil because the initiation of

separation from one surface changed the circulation around the airfoil, movin the front

, stagnation point toward the separated surface and therefore initiating a ;,sparttion fromn

the opposite surface. The amplitude at the shedding frequency was three orders of

magnitude stronger than the background turbulence. The amplitude of the oscillations

r, behind a circular cylinder of screens was approximately two orders of magnitude above the

background, while the amplitude of the oscillations downstream of the solid strip he!d

% normal to the flow was of the same order of magnitude as the background.

It is also suspected that the lower the frequency of the shedding, the more persistent

the initial effects will be; in fact, the frequency of shedding downstream of the symmetrical

airfoil of a given thickness depends on the chord length, provided the flow separates

upstream of the trailing edge. The effects of frequency, however, appear to be less

significant than the effects of amplitude. A detailed investigation of the near wake has

" been undertaken in order to determine the effect> of initial condition more precisely.

Cimbala et al. (1981) observed, with the aid of a smoke wire, the evolution of large

coherent structures in a wake of a circular cylinder up to Red < 2000 and in a wake of two

screens at comparable Re. These structures became apparent some 200 diameters

downstream of the cylinder and had a regular frequency two to three times lower than the

-eP

:. -.. ;'. .- ". " ".,"," . ."," 'v" .'"-",'" ".- .- v ".-",.',- .-:.-..' ', " "- ". "..v ,-,.-.-.'-..- .- .'.'q.', . ',,. " -',-',-' ., : + -', *41



-33-

Strouhal frequency. They were unabhe, however, t corroborat? their rc-sults with spectral
measurements for their high Reynolds number case and attributed it to Ihe hi.h turbuleice

level in their tunnel. Some measurements of spectra at the oute!r edge of tha! wak. w'ere

presently carried out for two wake generators: (i) a circular cylinder at Ree = 2500

*o' corresponding to Red = 5000 and (ii) a screen having 45 percent solidity, also at Ree =

2500. In the immediate neighborhood of the cylinder, the predominant spectral peak (not

*shown) corresponded to the shedding frequency of the cylinder, i.e., at Std = 0.206 or S'3

= 0.10. At i > 50, the predominant sl-actral peak dropped quite abruptly to Ste = 0.03.

Thereafter, the evolution of the spectral peak was rather slow and is hardly detectable on

the scale shown in Figure 5.1. The spectral peaks associated with the screen tailored to

produce the same momentum thickness as the circular cylinder are. similar to thnse

mentioned above at x > 250. The big difference between the two flows occurs at 50 < x <

3 I250, where the characteristic frequency of the spectral peaks generated by the screen

decreases slowly with i. At ; > 150, one may detect the appearance of an additional peak

-,.Plow. in the spectrum, which roughly corresponds to the spectral peak in th - iar w,.ke of the

circular cylinder; this peak amplifies quickly and dominat's ti.e sp,':rtrum at Y it

seems that the coherent structures in the near wake of this p ..t c:1ar t' n rt -i 7 of

- their characteristics up to x = 250, while in the wake of *,e circular cyl n,.,r, tnis

transition is accomplished at x- 50. It is believed that the shear lavers generated in the

wake of the screen (see insert in Figure 5.1) undergo an instabi;itv procass reminiscent of

the plane mixing layer (Caster et al. 1984), generating eddies whose characteristic

frequency decreases in the downstream direction. Whether there eddies row by entraining

e, " fluid from the surronding strea]m or by a process of amalg~amation r .n. -,is to h- . .

Since Cimbala et al. (1981) did not observe any vortex amaigamatitrn in their

. visualization experiments, one would be inclined to think that the gradi,.ii decrease in the

S"t characteristic frequency stemming from an increase in the wavelen-th of these eddies is

% caused by entrainment. In any event, once the scale of these eddies becomes comparable

. , ,.- - -. .. . . . . . . . .... . .. ...
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to the width of the screen, an interaction between two shear layers of opposin, vorticlty

has to occur b,:ote tn wake will become "fully developed'. It is possible that a chae

accommodation ensues, resulting in a slow evolution of the typical large structures exist~ng

in the self-preserving region. The evolution of the fully developed wake is currently being

investigated, but the importance of initial conditions is evident in Figure 5.1.

The mutual interaction between the large coherent structures and the mean flow is

outside the scope of the linear stability theory. However, the dependence of the mean flow

field on the initial conditions, and consequently on the large coherent structures, poses

precisely such a problem. The notion that the free-stream turbulence and the shape of the

generator may have an effect on the development of a self-preserving wake was proposed

by Symes and Fink (1977). These authors observed that the wake generated by a

rectangular cylinder did not evolve in the same manner as the wake generated by a circular

k cylinder, but the most important observation was that the evolution of the wake was

sensitive to grid turbulence, whose integral scale was an order of magnitude larger than the

scale of the generator. This suggested that the externally imposed turbulence interacted

with the flow far downstream, where the typical scales in the wake and in the free stream

became ccnparable. It also implied that an instability mechanism might be responsible for

this result. The present investigation confirmed this notion, although nonlinear terms should

be considered in order to assess the interaction between the mean flow and the imposed

oscillation. Perhaps, an integral approach similar to the one used by Ko et al. (1970) might

predict such an interaction through the Reynolds stress. The concept of flow equilibrium

and self-preservation has to be carefully reconsidered in view of the present findings, in

spite of the fact that the normalized shape of the mean velocity profile was not affected.

The dependence of the lateral distributicn of 52 on the nature of the generator (Figure

4.3.1) and the relatively poor collapse of the dimensionless data onto a single G( ) function

for a given wake generator raise the possibility that the flow is not in equilibrium.

". Although this possibility was considered remote at the start of this investigation, a plot

I .-- ,1
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showing )e difference between the maximum intensity -.2,, and :he intensity i the

centerline of t.he wake(u 2 )c, normalized by u2 is shown in Figure 5.2 for the wak of the

flat plate. If the flow was in perfect equilibrium, then (C2 )max - (u2)CL/ 2 should have

been constant at all . Although this plot is very susceptible to experimental inaccuracies

and should be treated with due caution, the lack of constancy might have been caused by

the modulation by the varicose mode of t';e vortices resulting from the sinuous mode of

instability. The possible interaction between the two modes has to be investigated in detail

by considering additional components of the turbulent stress tensor.

The assumption of parallel flow (eq. 3.2.2) makes the eigenfunction 61,y) and the

eigenvalues a and B invariant with respect to streamwise distance from the generator.

Thus, for ai = 0 (i.e., spatially amplified waves), only a single mode ccntaining the largest

I-ail need be considered. However, the amp!ification rates in the small-deficit, plane

wake are so small that one cannot disregard one mode of instability in favor of another

simply because its I-ii is the largest. This is so because the long distances required for an

unstable wave to amplify increase the relative significance of the longitudinal gradients in

the mean velocity. By neglecting the varicose mnde in favor of the sinuous one, Sato and

- Kuriki (1961) had to resort to nonlinear efffcts in their attempt to explain the cause for

the generation of two rows of vortices. Mattingly and Criminale (1972) offered an

alternate explanation, which is based on the vorticity distribution of the sinuous mode being

, superposed on the mean vorticity. The generation of a vortex structure reminiscent of a

Karman vortex street can quite easily be attributed to the superposition of the two

instability modes, keeping in mind that the most unstable frequency of the varicose 'node is

• only slightly higher than a subharmonic of the most unstable sinucus mode. Sinuous forcing

of the flow has little effect on the shape of the large eddies visualized by smok until the

amplitude of the forcing becomes exceedingly :1:!4h. In this case, the smoke patt,.'rn is mc'.re

regular and the eddies are located closer to the centerline than in the corresponding

unforced wake.

%S
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6. CONCLUSIONS

It was exp- rimentaily cbserved that the characteri:stic velocity and ln;;th scaIcs, u0

and L., when suitably scaled by the momentum thickness and the free-stream velocity, rk)
%0'

not exhibit universal behavior and do depend on the initial conditions and therefore on the

. geometry of the wake generator. The mean velocity profiles for each wake, when

normalized by their own velocity and length scales, are self-preserving and are also

identical for all wake generators. The distributions of the :ongitudinal turbulence intensity

normalized in the same manner are self-preserving, but are not identical, and depend on the

geometry of the wakl'_1 generator.

Linear inviscid stability theory, in which the divergence of the mean flow was taken

into account, predicts quite well the amplification and the transverse distributions of

amplitudes and phases of externally imposed sinuous waves in a fully developed turbulent

wake generated by a flat plate. It appears that the large, coherent, vortex structures

occurring naturally in a wake can be modeled by linear stability theory. Furthermore, the

interaction of the two possible modes of instability may be r-sponsible for the apparent

Karman vortex street-ype of structures observed visually in the srnall-deficit, turbulent

wake.
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FIGURE CAPTIOJS

. 1.1 A sketch defining the nomenclature.

1.2 Centerline turbulence intensity for wakes gten-rated Ly circular cvir< 'r-.

%4arasli (1983), Re = 1360, AR = 384

Li Marasli, Re = 3900, AR = 123

Townsend (19??), Re = 1360, AR 240

Townsend (1949)

- Uberoi and Freymuth (1969), Re = 4320, AR - 192

. Yamada et al. '1980), Re = 400, AR 80

" - Champ gne (1978), Re = 19,000, AR = 32

g A Symps and Fink (1977), Re = 6666, AR = 150

L Symes and Fink, ext. turb.

4.'.l 'he sharpp of hie stIf wrilnir vo,, lelcitv profile. Data fr,- r r :,rcent

-,(1h 'ity , f-,,n fri Z ! 7 'l

4.2.2 T'hp variation of un with { for three wake gent:rators.

Airfoil

- 0 percent solidity screen

Solid strip
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4.2.3 The variation of W0 with uO/U for three wake generators.

7 Airfoil

70 percent solidity screen

Q- Solid strip

4.2.4 The dependence of /L0 on u0/U.. Symbols represent data from all wake

generators studied.

4.3.1 Normalied turbulence intensity distributions for three generators.

4.4.1 Spectra of u fluctuations on centerline of flat-plate wake at various downstream

positions. Insert shows similarity of spectra wiie scaled by L 0 and U,.

4.4.2 Spectra of induced u fluctuations at n = 3 in the flat-plate wake at various

downstream locations. Insert shows similarity of spectra when scaled by L0 and

U.

4.4.3 Spatial amplification rates computed for several disturbance frequencies in a

wake. Insert shows expected predominant frequency (computed) compared to

measured predominant frequency range as a function of X.

4.5.1 The effect of forcing on the measured u spectrum at x = 400.

4.5.2 The effect of forcing frequency on the velocity spectru, at a fixed !ocltion in

the wake. x = 400.

5.
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4.5.3 Amplitude distribution of u fluctuations phase locked to the external sinuott;

forcing signal. x = 4C0.

4.5.4 A comparison between the measured and predicted u perturbation amplitude

distributions at several ; locations in a sinuously forced wake. A is not A(x) of

theory.

4.5.5 The variation of the computed eigenfunction with i.

4.5.6 A comparison between measured and predicted phase distributions in a wake.

4.6.1 The amplitude distribution of the u component f = 40 Hz and = 537 in the

unforced wake.

, 4.6.2 A comparison between measured and predicted u amplitude distributions at

several x locations in an unforccd wake. , is n,)t A x) rf theory.

4.6.3 Large coherent structurcs phot.,r.ph2i in the wake of tlhe flat plate with no

forcing. x = 500 and Rea = 60U.
I--.

4.6.4 The spanwise coherence of the large eddies in the wake of a circular cylinder at

x 600 and Re 0 = 600.

I
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4.6.5 The response of the wake to various sinuous forcing levels. = 646 3rA n = !.6.

() f = 50 Hz, A z/L 0 =

Sf = 5O Hz, A z/L0 = 0.4

f = 100 Hz, Az/L 0

Sf= loo Hz, Az/L 0 = 0 .4

Sf = 150 Hz, &z/L 0 =i1

A,,

- f = 150 Hz, A z/L 0 = 0.4

4.6.6 Coherence spectra measured at x = 646, 1 = 0.6, and A z/L 0 = 0.4 in the wake of

the flat plate. Upper trace without forcing. Lower trace with forcing at 50

Hz.
S.

4.6.7 (a) Coherence spectrum measured at x = 646, n= 0.6, and Az/L 0 = 10, with

forcing at 50 Hz.

(b) Same as (a) except, r = 3.

4.6.8 Streak-lines computed assumin, spatial instabi'izy of paaleI (?ow at 300:

(a) sinuous, most-amplified mode; (b) varicose, most-amplified mode; (c)

combined modes.

4.6.9 Streak-lines from Figure 4.6.8(c) plotted on !arger scale to show staggered

nature of particle congregation.

4.6.10 Vorticity perturbation contours comnputed for the three cases of streak-line-,

shown in Figure 4.6.3: (a) sinuous, most-amplified modt-; (h) varicose, mo.t-

ampiified mode; (c) combined nodes.
A.
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5.1 The measured predominant frequencies in the wvake of:

(a) )A circular cylinier, Rea = 2000

(b) LXThe 30 percent solidity screen, Rea = 2000.

5.2 The variation of turbulent intensity defect on the centerline of the wake of a

flat plate.
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Table 2. Summary of Experimental Results on Wake Generators

r I

WAKE U X

GE,ERATOR (m/') (mm) 2e o o0  W

3/16" Cylinder 14.5 2.33 -74 1.75 0.289 0.506-- I

3&" SolidityScren 14.5 2.31 58 1.82 0.279 0.508Screen "5"8

45, Solidity
Screen 14.5 2.33 27 1.78 0.285 0.507

70 Solidity I
Screen 14. T 2 39 -21 1.67 0.302 0.504

Solid Strip 14.5 2.31 -64 1.88 0.270 0.508

Symme tri calAirfoil 14.5 2.23 -43 1.35 0.377 0.509

Flat Plate 7.45 2.36 5 1.71 297 0.508

Flat Plate
Freq=50 Hz 7.45 2.36 48 1.48 0.344 0.509

AMP = 0.2V

Flat Plate

Flap Freq=50 Hz 7.45 2.46 61 1.32 2. .
A 0 . V

Flit Plate
Flap Freq=20 Hz 7.45 2.40 48 1.57 1 0.323 0, 5(17

9 -- p-- 0. 5V-

• 3/16" Cylinder 20.7 2.54 -100 124 (>288 n
,'ChaDman 192) 2 2 1 . . ...

1/16" Cylinder 21.4 (0.737 -170 1.77 >285 ,5O

1 16 Cylinder i 14.5 0.737 -130 1 1.74 2.
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